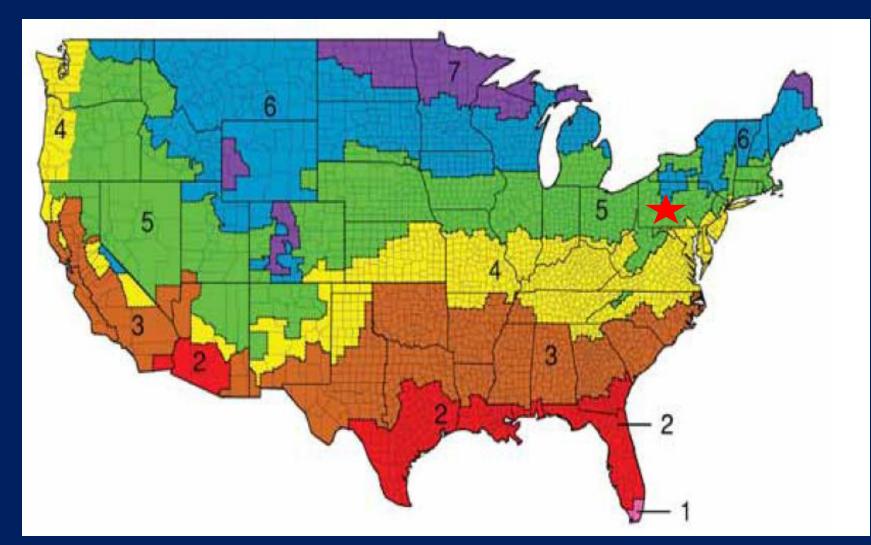


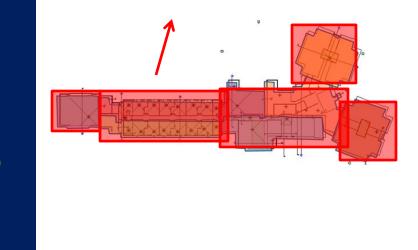
The Sunshine Elementary School **Redesign Proposal**


Pennsylvania State University **AE Senior Thesis** Nicholas Scheib Mechanical Option- IP

1. Project Overview

- 2. Existing Conditions
- 3. Depth
 - 1. Radiant Heating and Cooling
 - 2. Low Velocity Displacement Ventilation
- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros versus Cons

The Sunshine Elementary School is located in Climate Zone 5. The design has met all ASHRAE requirements of this climate zone.



ASHRAE Climate Chart (Fundamentals, 2009)

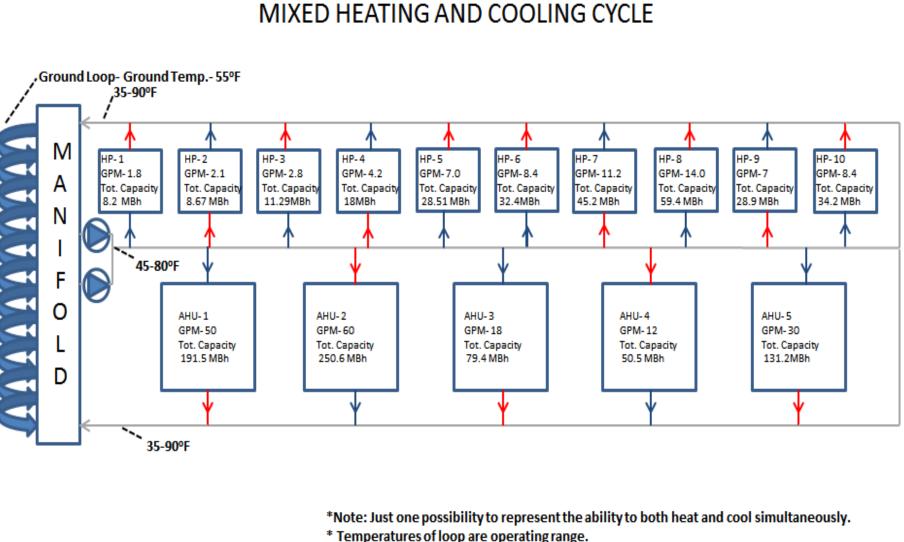
General Information of Project

Size- 103,000 Square Feet 2 Levels Overall Cost- \$16,599,000 Brick Facade Gable Roofs Construction Dates- March 2010- June 2011 Silver LEED Accreditation Goal

1. Project Overview

2. Existing Conditions

- 3. Depth
 - 1. Radiant Heating and Cooling
 - 2. Low Velocity Displacement Ventilation
- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros versus Cons


- 144 Vertical Geothermal Wells- 12 x 12 grid
- Water-to-Air Heat Pumps- each room
- **Energy Recovery Units**
- CO, Sensors

 $\overline{}$

- AHU's for gym and cafeteria
- eQuest[©] Energy Model- LEED approved
 - 42% more efficient then Baseline Model

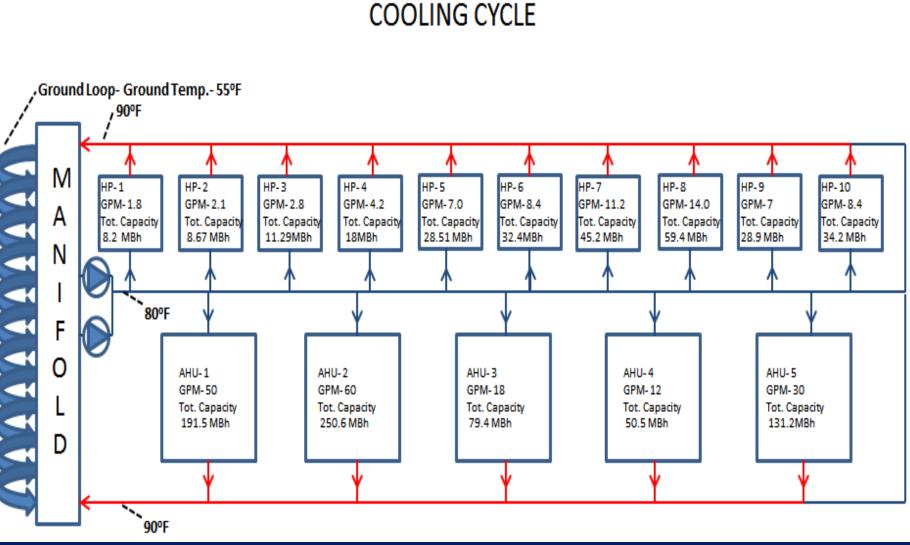
Original Design Components

Water-to-Air Heat Pumps Tied to Ground Loop

1. Project Overview

2. Existing Conditions

- 3. Depth
 - 1. Radiant Heating and Cooling
 - 2. Low Velocity Displacement Ventilation
- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros versus Cons


- 144 Vertical Geothermal Wells- 12 x 12 grid
- Water-to-Air Heat Pumps- each room
- **Energy Recovery Units**
- CO, Sensors

 \mathbf{O}

- AHU's for gym and cafeteria
- eQuest[©] Energy Model- LEED approved
 - 42% more efficient then Baseline Model

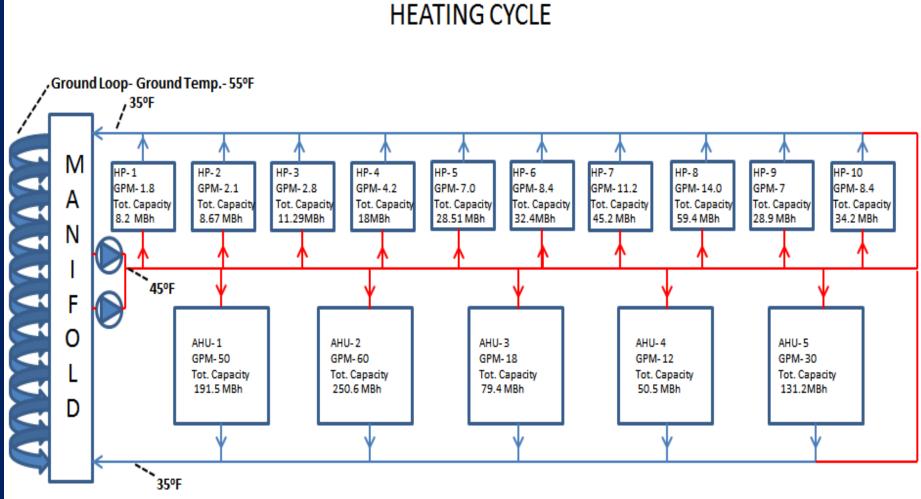
Original Design Components

Water-to-Air Heat Pumps Tied to Ground Loop

1. Project Overview

2. Existing Conditions

- 3. Depth
 - 1. Radiant Heating and Cooling
 - 2. Low Velocity Displacement Ventilation
- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros versus Cons

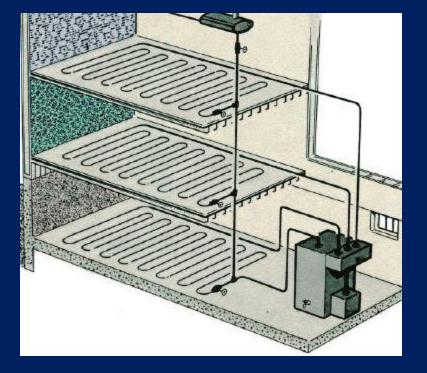

- 144 Vertical Geothermal Wells- 12 x 12 grid
- Water-to-Air Heat Pumps- each room
- **Energy Recovery Units**
- CO, Sensors

 \mathbf{O}

- AHU's for gym and cafeteria
- eQuest[©] Energy Model- LEED approved
 - 42% more efficient then Baseline Model

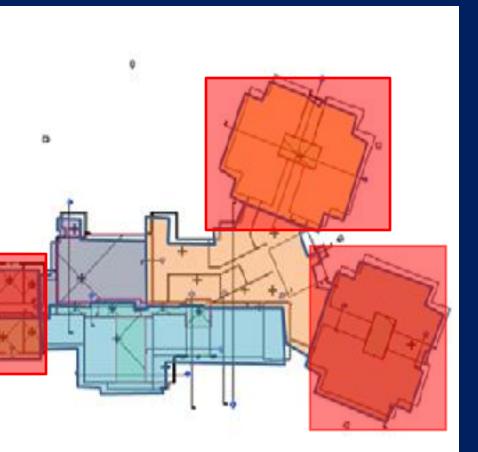
Original Design Components

Water-to-Air Heat Pumps Tied to Ground Loop



- 1. Project Overview
- 2. Existing Conditions
- 3. Depth

1. Radiant Heating and Cooling


- 2. Low Velocity Displacement Ventilation
- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros versus Cons

Radiant Heating and Cooling

Enough Capacity?

Radiant heating and cooling was designed in the gymnasium, 1st through 5th grade classrooms and kindergarten classrooms.

- 1. Project Overview
- 2. Existing Conditions
- 3. Depth

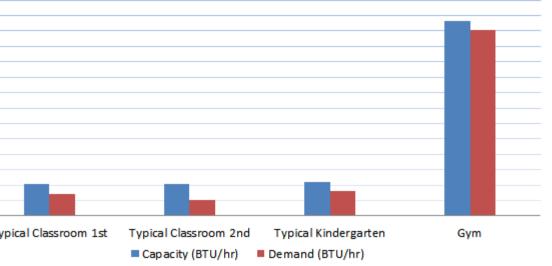
1. Radiant Heating and Cooling

- 2. Low Velocity Displacement Ventilation
- Breadths 4
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros versus Cons

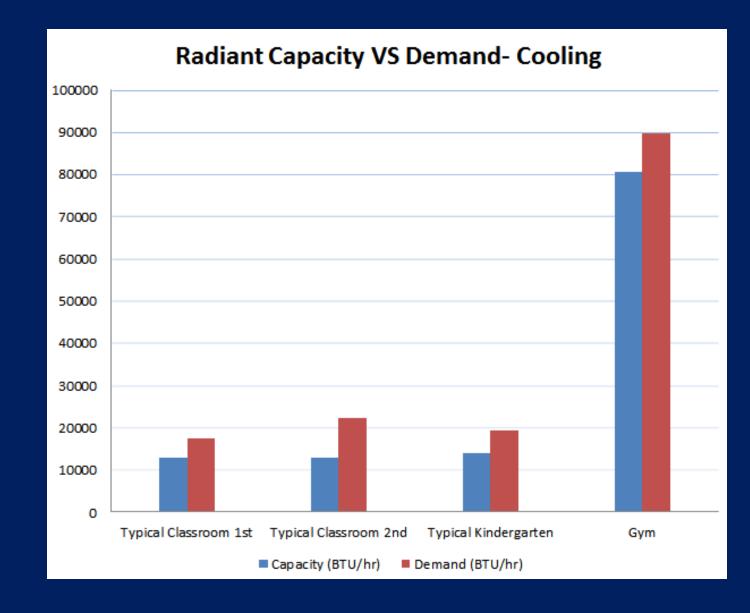
	ſ
Tota	
Floor	
Note: Floor	-
Table 28- Slab Heat	t
Radia	ĺ
140000	
120000	
110000	
90000	
80000	
70000	
50000	
40000	
30000	
10000	
o —	-
ΤI	/

Using coefficients found by Bjarne W. Olesen the Radiant heating and Cooling capacities were found.

al Heat Exchange	Coefficients	(BTU)/(hr*ft ² *F)
------------------	--------------	-------------------------------


Heating	Cooling
1.94	1.24

areas with direct sun the overall heat transfer is up to 3x's Greater (Source: Bjarne W. Olesen)

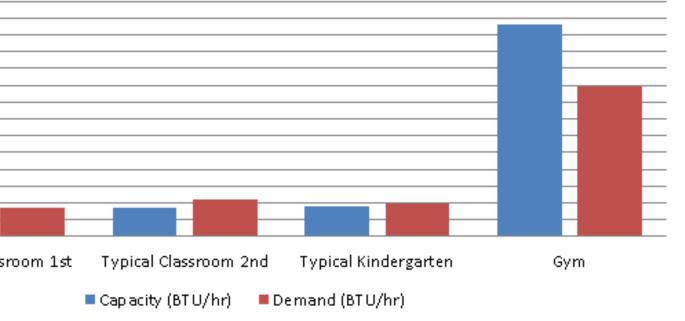

Exchange Coefficients

Int Capacity = Coefficient* Floor Area * ΔT

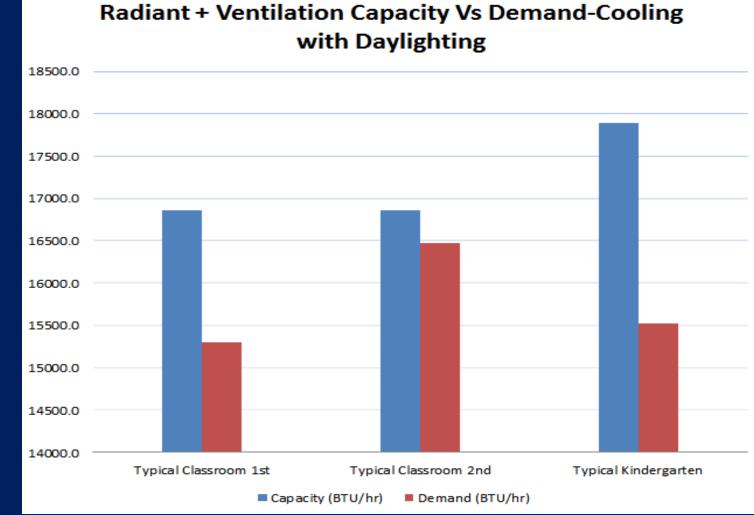
The cooling Capacity of a radiant slab is less then that of heating.

- 1. Project Overview
- 2. Existing Conditions
- 3. Depth

1. Radiant Heating and Cooling


- 2. Low Velocity Displacement Ventilation
- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros versus Cons

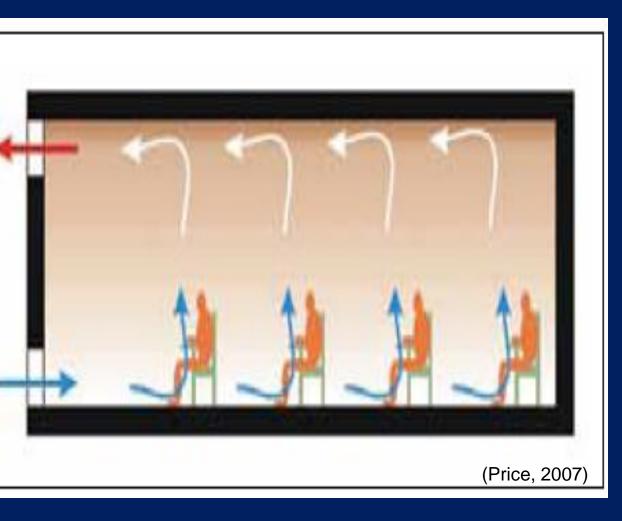
	ove to still
Ra	adiant Ca
140000.0 130000.0 120000.0 110000.0 90000.0 90000.0 70000.0 60000.0 50000.0 40000.0 30000.0 20000.0 10000.0 0.0	Radiant +


Conditioning Ventilation air will increase the system capacity but I not be enough.

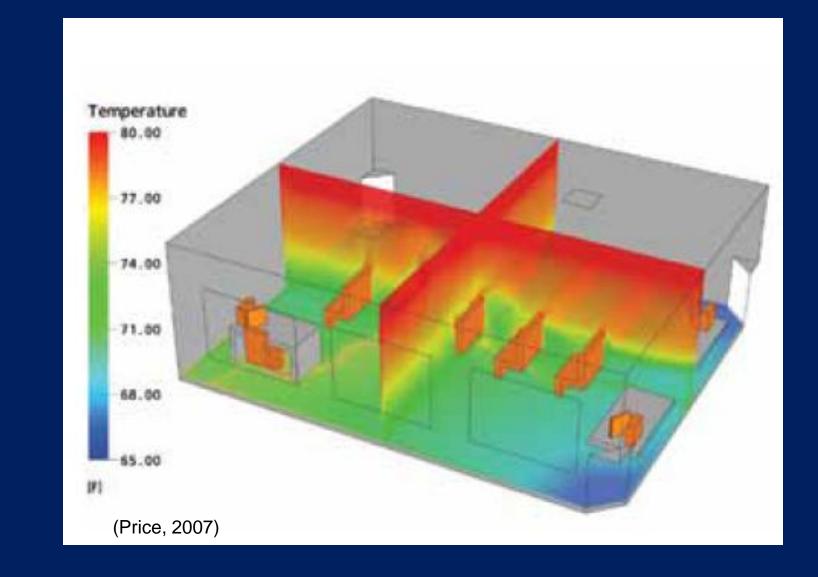
apacity + $(1.08 \times CFM \times \Delta T)$ = Total Capacity

+ Ventilation Capacity VS Demand- Cooling

By adding daylighting controls to the building the peak cooling demand is now met.



- 1. Project Overview
- 2. Existing Conditions
- 3. Depth
 - 1. Radiant Heating and Cooling

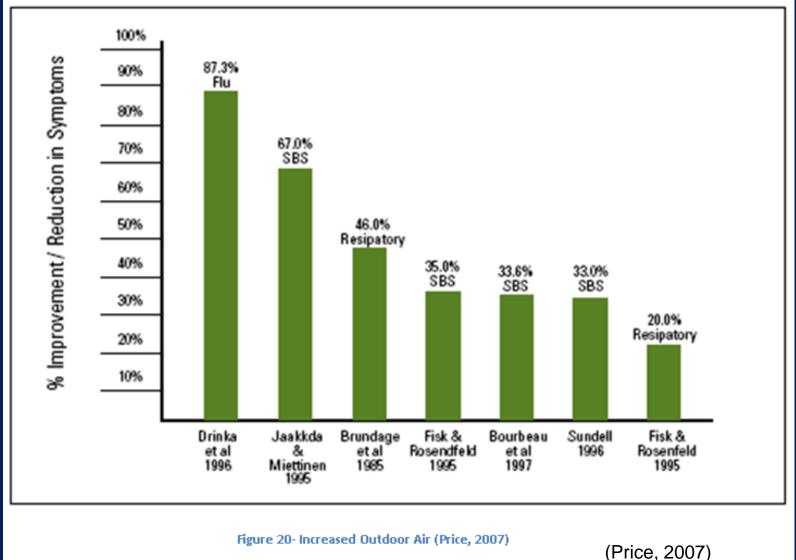

2. Low Velocity Displacement Ventilation

- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros Versus Cons

Low Velocity Displacement Ventilation couples well with radiant systems by increasing the stratification of the space.

The combined effect of radiant systems and low velocity displacement ventilation treats the load where the demand is located.

- 1. Project Overview
- 2. Existing Conditions
- 3. Depth
 - 1. Radiant Heating and Cooling

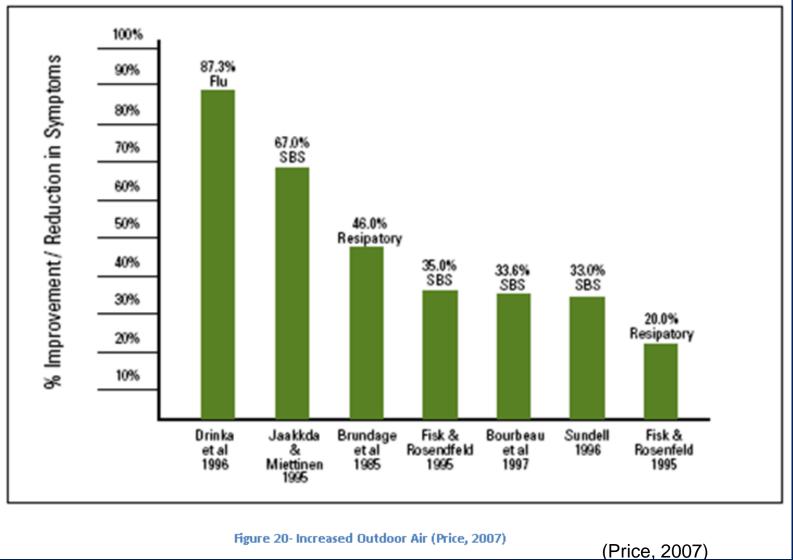

2. Low Velocity Displacement Ventilation

- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros versus Cons

	e Air Chang % increased
	A
Ez	
Az	sf
Pz	people
Raz	cfm/sf
Rpz	cfm/p
Vbz	cfm
Voz	cfm
Table 37-	Original Design Vent Proposed Kedesigne
	- 1

e Effectiveness (Ez) is increased to 1.2 allowing of d outdoor air while reducing CFM by 13%.

ASHRAE 62.1 Ventilation Rate Calculations- Design										
	Classroom Kindergarten									
	0.8	0.8]_							
	857	941]-							
	21	24]-							
	0.12	0.12]-							
	10	10]-							
= RpzPz + RazAz =	312.8	352.9	-							
= Vbz/Ez =	391.1	441.2								
ntilation Rate Calculations										

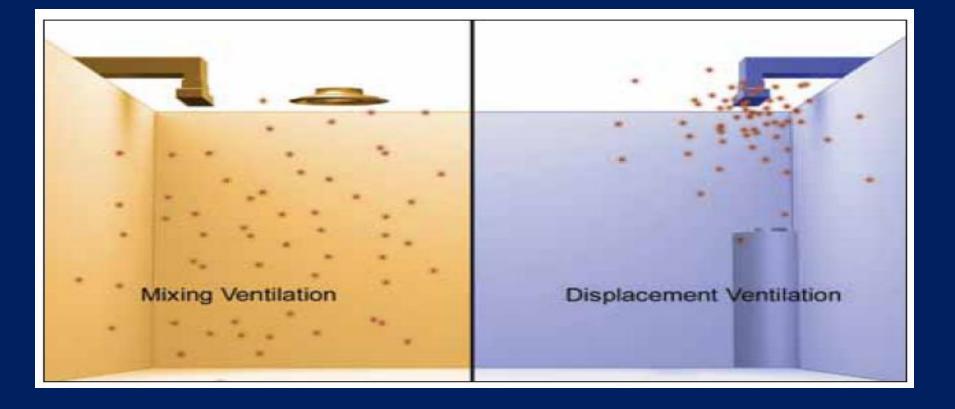


- 1. Project Overview
- 2. Existing Conditions
- 3. Depth
 - 1. Radiant Heating and Cooling

2. Low Velocity Displacement Ventilation

- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros versus Cons

	The Air Change Effectiveness (Ez) is increased to 1.2 allowing of 30% increased outdoor air while reducing CFM by 13%.									
		ASH	RAE 62.1	Ventilat	ion Rate Ca	Iculations- Redesign I				
						Classroom	Kindergarten			
Ez						1.2	1.2			
Az	sf					857	941			
Pz	people					21	24			
Raz	cfm/sf					0.12	0.12			
Rpz	cfm/p					10	10			
Vbz	cfm	=	RpzPz +	RazAz	=	312.8	352.9			
Voz	cfm	=	Vbz/Ez		=	260.7	294.1			
					onal 30%	338.9	382.3			
Table 38	 Proposed Red 	designed	d Ventilation	n Rate Calo	culations					

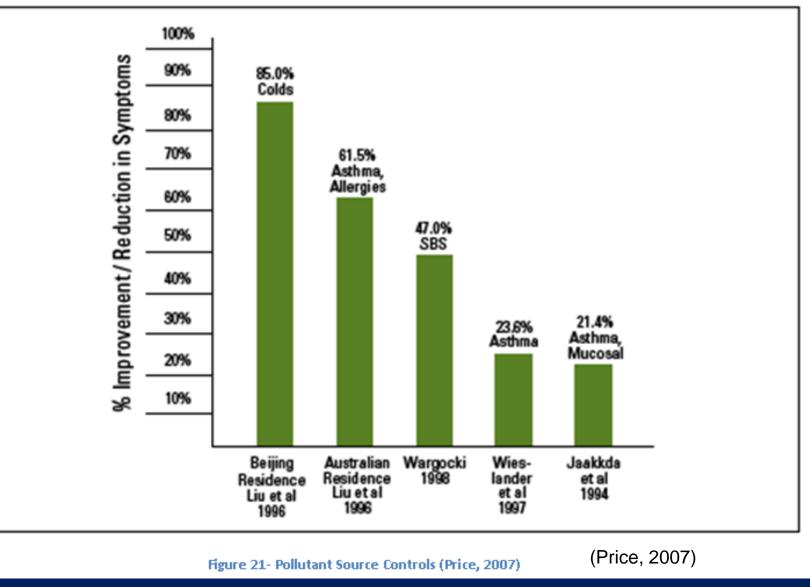


- 1. Project Overview
- 2. Existing Conditions
- 3. Depth
 - 1. Radiant Heating and Cooling

2. Low Velocity Displacement Ventilation

- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros versus Cons

	The Air Change Effectiveness (Ez) is increased to 1.2 allowing of 30% increased outdoor air while reducing CFM by 13%.									
		ASH	RAE 62.1	Ventilat	ion Rate Ca	Iculations- Redesign I				
						Classroom	Kindergarten			
Ez						1.2	1.2			
Az	sf					857	941			
Pz	people					21	24			
Raz	cfm/sf					0.12	0.12			
Rpz	cfm/p					10	10			
Vbz	cfm	=	RpzPz +	RazAz	=	312.8	352.9			
Voz	cfm	=	Vbz/Ez		=	260.7	294.1			
					onal 30%	338.9	382.3			
Table 38	 Proposed Red 	designed	d Ventilation	n Rate Calo	culations					

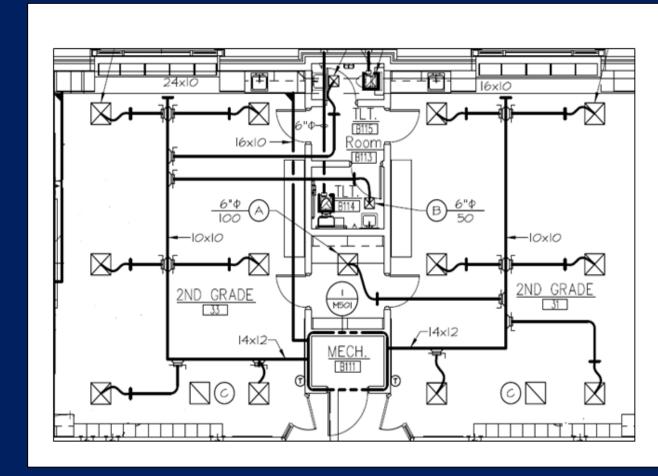


- 1. Project Overview
- 2. Existing Conditions
- 3. Depth
 - 1. Radiant Heating and Cooling

2. Low Velocity Displacement Ventilation

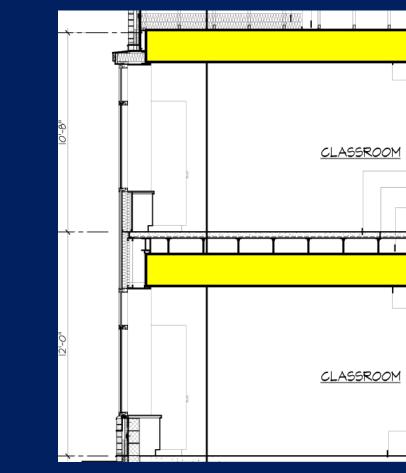
- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros versus Cons

	e Air Change Effective % increased outdoor	``									
	ASHRAE 62.1 Ve	ntilation Rate Ca	Iculations- Redesign D								
			1.2	Kindergarten 1.2							
Ez			857	941							
Az	sf		21	24							
Pz	people		0.12	0.12							
Raz	cfm/sf		10	10							
Rpz Vbz	cfm/p cfm = RpzPz + Raz	Δ7 =	312.8	352.9							
Voz	cfm = Vbz/Ez	=	260.7	294.1							
V02			338.9	382.3							
	A - Proposed Redesigned Ventilation Ra	dditional 30%	556.9	502.5							



- 1. Project Overview
- 2. Existing Conditions
- 3. Depth
 - 1. Radiant Heating and Cooling

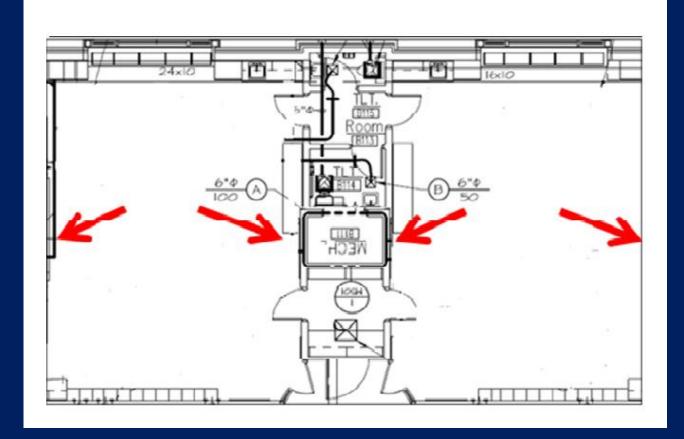
2. Low Velocity Displacement Ventilation


- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros versus Cons

Additional benefits are added by reducing needed ductwork to typical classrooms.

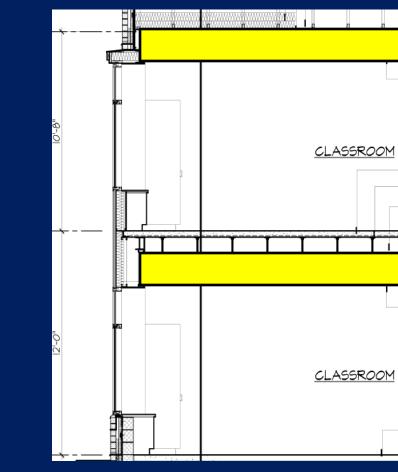
Original Ductwork

Without the need for ductwork above the suspended ceiling building height can be lowered by 32".


E	E.	E	E	E	F	F	F	E.	
- 916P	A.P. CL	G							
	A OL	0.							
CONCI									
	L DECK								
SEE S	FLOOR	? FRAM DWGS.	IING						
T	T	T	T	T	Τ	T	T	T	
curre		_							
— 505P.	A.P. CL	.G.							
CONC	RETE SL								
-0010	REIE JL	_AD							

- 1. Project Overview
- 2. Existing Conditions
- 3. Depth
 - 1. Radiant Heating and Cooling

2. Low Velocity Displacement Ventilation

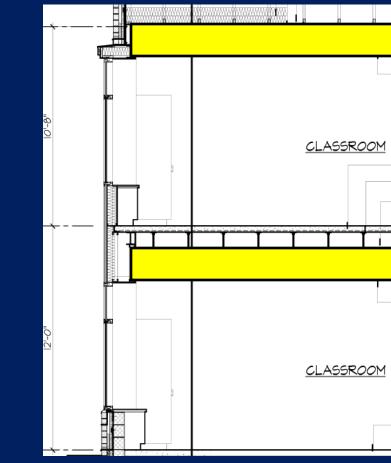

- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros versus Cons

Additional benefits are added by reducing needed ductwork to typical classrooms.

Redesign Ductwork

Without the need for ductwork above the suspended ceiling building height can be lowered by 32".

E	E.	E	E	E	F	F	F	E.	
- 916P	A.P. CL	G							
	A OL	0.							
CONCI									
	L DECK								
SEE S	FLOOR	? FRAM DWGS.	IING						
T	T	T	T	T	Τ	T	T	T	
curre		_							
— 505P.	A.P. CL	.G.							
CONC	RETE SL								
-0010	REIE JL	_AD							


- 1. Project Overview
- 2. Existing Conditions
- 3. Depth
 - 1. Radiant Heating and Cooling

2. Low Velocity Displacement Ventilation

- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros versus Cons

	Additional benefits are added by reducing needed ductwork to typical classrooms.										
Rectangular Duct Take-off Original Design											
				Daily	Labor	Bare	Bare	Bare	Total	Height %	
	Description	Unit	Crew	Output	Hours	Materials	Labor	Total	O&P	70 Increase	Total Cost
Typical	Over 5000										
Classroom	lb.	Lb.	Q10	285	0.084	0.57	3.56	4.13	6.13	0	57965.28
	12"x 8" Duct Fitting	Ea	1 Sheet	20	0.4	21.5	18.1	39.6	52	0	12480.00
	Flex Duct 8"	L.F.	Q9	180	0.089	2.66	3.62	6.28	8.53	0	8188.80
	Diffusers 24"x24"	Ea	1 Sheet	7	1.143	256	52	308	361	0	86640.00
Total Savings											165,274
Table	43- Typical Classr	room Du	ictwork Take	off							

Without the need for ductwork above the suspended ceiling building height can be lowered by 32".

E	E.	E	E	E	F	F	F	E.	
- 916P	A.P. CL	G							
	A OL	0.							
CONCI									
	L DECK								
SEE S	FLOOR	? FRAM DWGS.	IING						
T	T	T	T	T	Τ	T	T	T	
curre		_							
— 505P.	A.P. CL	.G.							
CONC	RETE SL								
-0010	REIE JL	_AD							

- 1. Project Overview
- 2. Existing Conditions
- 3. Depth
 - 1. Radiant Heating and Cooling

2. Low Velocity Displacement Ventilation

- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros versus Cons

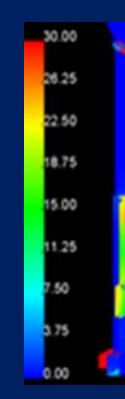
Additional benefits are added by reducing needed ductwork to typical classrooms.											
			Red	tangular Du	ict Take-	off Original	Design				
	Description	11-14	6 mm	Daily	Labor	Bare	Bare	Bare	Total	Height %	Tabel Cost
Typical	Description Over 5000	Unit	Crew	Output	Hours	Materials	Labor	Total	O&P	Increase	Total Cost
Classroom	lb.	Lb.	Q10	285	0.084	0.57	3.56	4.13	6.13	0	57965.28
	12"x 8" Duct Fitting	Ea	1 Sheet	20	0.4	21.5	18.1	39.6	52	0	12480.00
	Flex Duct 8"	L.F.	Q9	180	0.089	2.66	3.62	6.28	8.53	0	8188.80
	Diffusers 24"x24"	Ea	1 Sheet	7	1.143	256	52	308	361	0	86640.00
Total Savings											165,274
Table	43- Typical Class	room Du	ictwork Take	off							

Without the need for ductwork above the suspended ceiling building height can be lowered by 32".

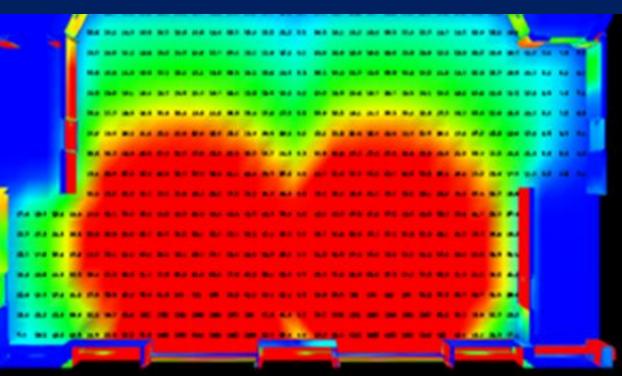
Wall Assemblies Take-off						
Description	Unit	Material	Installation	Total	Total Savings	
Brick Cavity Wall Insulated Backup- 12" CMU	S.F.	11	20.35	31.35	37,500	
* Cost Extrapolated from R. S. Means Wall Assemblies						

Table 48- R. S. Means Wall Assembly Take-off

- 1. Project Overview
- 2. Existing Conditions

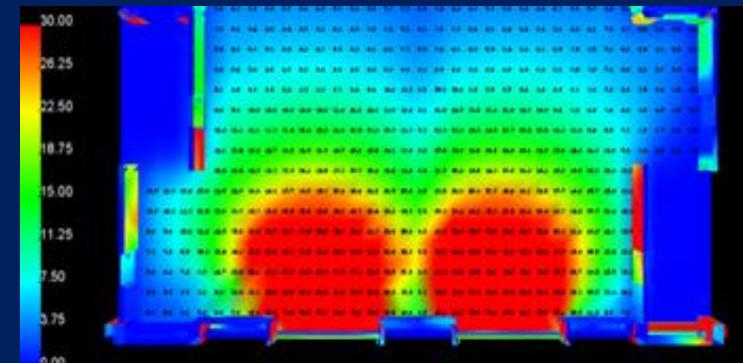

3. Depth

- 1. Radiant Heating and Cooling
- 2. Low Velocity Displacement Ventilation
- 4. Breadths


1. Daylighting

- 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros versus Cons

IESNA Lighting Design Guide the task of using a #2 pencil and softer leads is a performance of high contrast and large size.

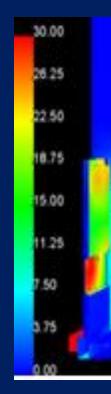


Typical 1st Classroom South Sept. 21 at 12pm

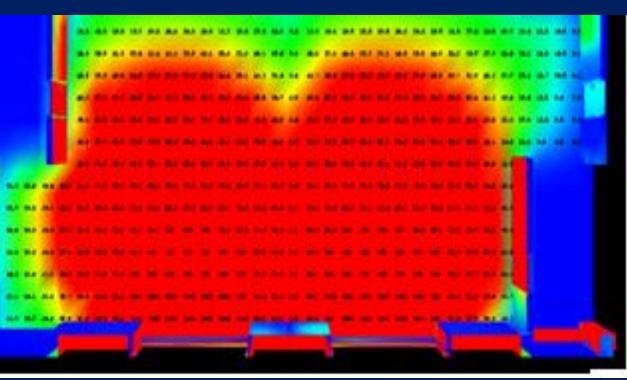
The North facing classrooms receive less daylight then the South facing classrooms but still have dimming potential.

Typical 1st Classroom North Sept. 21 at 12pm

- 1. Project Overview
- 2. Existing Conditions

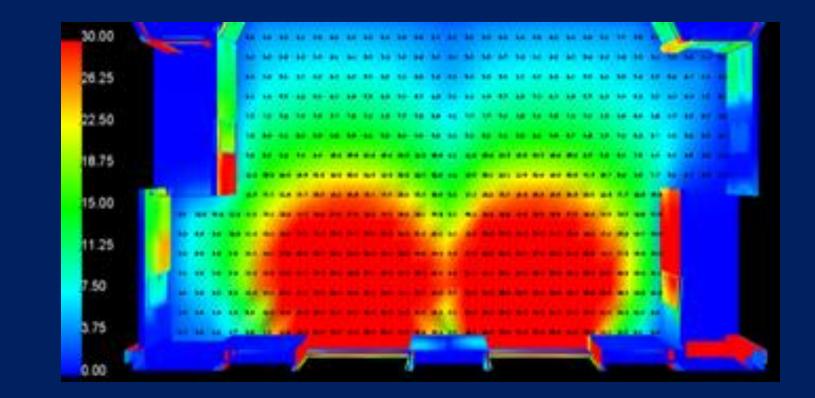

3. Depth

- 1. Radiant Heating and Cooling
- 2. Low Velocity Displacement Ventilation
- 4. Breadths


1. Daylighting

- 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros versus Cons

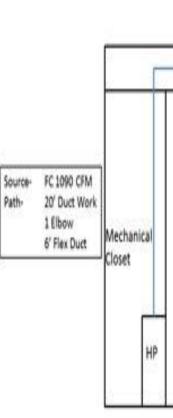
IESNA Lighting Design Guide the task of using a #2 pencil and softer leads is a performance of high contrast and large size.



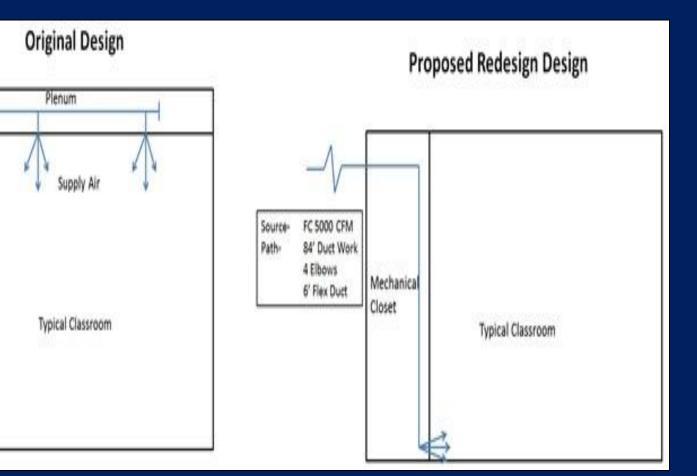
Typical 2nd Classroom South Sept. <u>21 at 12pm</u>

The North facing classrooms receive less daylight then the South facing classrooms but still have dimming potential.

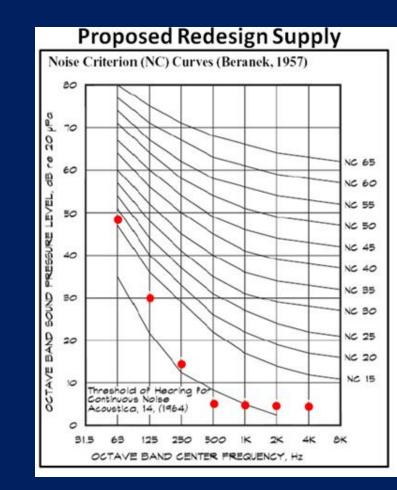
Typical 2ndClassroom North Sept. 21 at 12pm

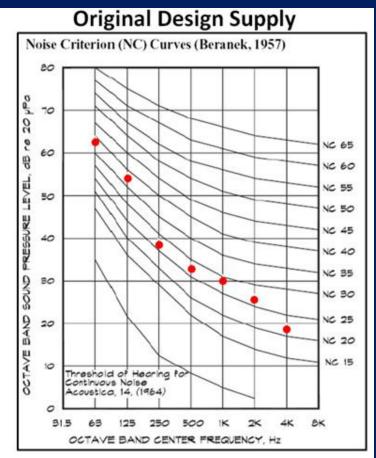


- 1. Project Overview
- 2. Existing Conditions
- 3. Depth
 - 1. Radiant Heating and Cooling
 - 2. Low Velocity Displacement Ventilation
- 4. Breadths
 - 1. Daylighting


2. Acoustics

- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros versus Cons


he redesign of the ai

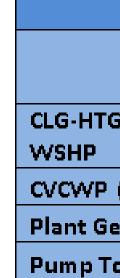


The redesign of the ventilation system changed the noise criteria rating of the air supply to the classrooms.

The noise criteria is reduced from a NC-39 to a NC-19 due to more attenuation within the duct work.

- 1. Project Overview
- 2. Existing Conditions
- 3. Depth
 - 1. Radiant Heating and Cooling
 - 2. Low Velocity Displacement Ventilation
- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros versus Cons

Using RS Mea made to origina
Item
Ductwork & Diffu
Wall Assembly
Water-to-Water
Water-to-Air H
Gym AHU
Pex Tubing
Daylighting Sens
Total Cost
Table 54- Overall Cost Cor


ans a cost comparison was calculated for all changes nal design.

(Overall Cost Comparison Of Changes	
	Original	Redesign
	6 4 7 0 F 0 0	¢ 20.000
fusers	\$ 170,500	\$ 30,000
oly	\$ 37,500	
er HP		\$ 97,500
HP	\$ 106,000	\$ 24,600
	\$ 30,800	\$ 8,200
5		\$ 271,000
1SOFS		\$ 8,760
	\$ 344,800	\$ 440,060
omparison of	Original to Redesign Changes	

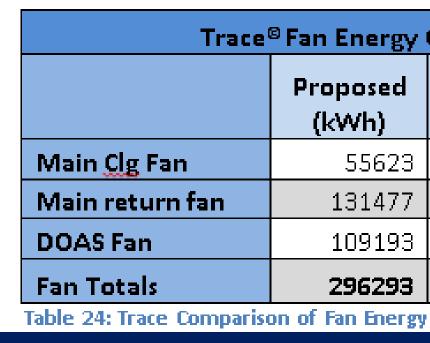
Overall the redesign was a 5% increase when compared to the initial cost.

Total MEP System Cost						
	Cost	Cost/ft ²				
Original	\$ 1,979,200	\$ 19.22				
Redesign	\$ 2,074,400	\$ 20.14				
% Difference	5%	5%				
Table 55- Total MEP Cost Imp	Table 55- Total MEP Cost Impact					

- 1. Project Overview
- 2. Existing Conditions
- 3. Depth
 - 1. Radiant Heating and Cooling
 - 2. Low Velocity Displacement Ventilation
- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. Life-Cycle Cost Analysis
- 6. Pros versus Cons

Annual Energy Savings of the proposed redesign compared to the original design were calculated.

Trace [®] Pumping Energy Comparison						
	Proposed (kWh)	Original (kWh)	Difference (%)			
G Plant 001-	181861	246999	26.4			
(MISC EQUIP)	10859	10656.8	-1.9			
eothermal Pump	1352414	1352414	0.0			
otals	1545134	1610070	4.0			
			- -			


Table 23: Trace Comparison of Pumping Energy

The savings in electric were then calculated using the electrical rates supplied by the designer.

eQuest [®] % Electrical Difference Overall Applied						
	Proposed (kWh)	Original (kWh)	Difference (%)			
Overall Total	2262959	2409400	6.1			
Table 26- eQuest® Ov	Table 26- eQuest® Overall Electrical Difference					

Cost Impact of Energy Reduction						
	Proposed (\$)	Original (\$)	Annual Savings			
Penelec Annual Bill	109416	116524	7100			
Table 27- Electrical Reduction of Proposed System						

- 1. Project Overview
- 2. Existing Conditions
- 3. Depth
 - 1. Radiant Heating and Cooling
 - 2. Low Velocity Displacement Ventilation
- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. Life-Cycle Cost Analysis
- 6. Pros versus Cons

Annual Energy Savings of the proposed redesign compared to the original design were calculated.

Trace [®] Fan Energy Comparison						
	Proposed (kWh)	Original (kWh)	Difference (%)			
Fan	55623	135895	59.1			
ırn fan	131477	273307	51.9			
	109193	109193	0.0			
s	296293	518395	42.8			
o Comparise	n of Ean Energy					

The savings in electric were then calculated using the electrical rates supplied by the designer.

eQuest [®] % Electrical Difference Overall Applied						
	Proposed (kWh)	Original (kWh)	Difference (%)			
Overall Total	2262959	2409400	6.1			
Table 26- eQuest® Ou	erall Electrical Dif	ference				

Cost Impact of Energy Reduction						
	Proposed (\$)	Original (\$)	Annual Savings			
Penelec Annual Bill	109416	116524	7100			
Table 27- Electrical Reduction of Proposed System						

- 1. Project Overview
- 2. Existing Conditions
- 3. Depth
 - 1. Radiant Heating and Cooling
 - 2. Low Velocity Displacement Ventilation
- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. Life-Cycle Cost Analysis
- 6. Pros versus Cons

C	origin	al de	esign	
		Jan	Feb	
Pre	oposed	49.3	41.1	Z
Or	iginal	53.3	45.5	l
%	Saving	7.5	9.7	

Annual Energy Savings of the proposed redesign compared to the were calculated.

Monthly Lighting Electrical Load													
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
sed	49.3	41.1	44.8	47	47.7	54.9	60.2	58.2	43.8	44.6	47.1	48.8	587.4
al	53.3	45.5	50.4	53.4	54.7	63.6	69.6	66.7	50	50.4	51.5	53.3	662.6
ng	7.5	9.7	11.1	12.0	12.8	13.7	13.5	12.7	12.4	11.5	8.5	8.4	11.3%
Tal	Table 57- Lighting Load Comparison Table												

The savings in electric were then calculated using the electrical rates supplied by the designer.

eQuest [®] % Electrical Difference Overall Applied						
	Proposed (kWh)	Original (kWh)	Difference (%)			
Overall Total	2262959	2409400	6.1			
Table 26- eQuest® Overall Electrical Difference						

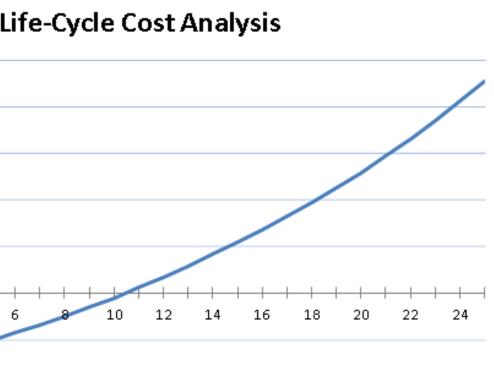
Cost Impact of Energy Reduction					
	Proposed (\$)	Original (\$)	Annual Savings		
Penelec Annual Bill	109416	116524	7100		
Table 27- Electrical Reduction of Proposed System					

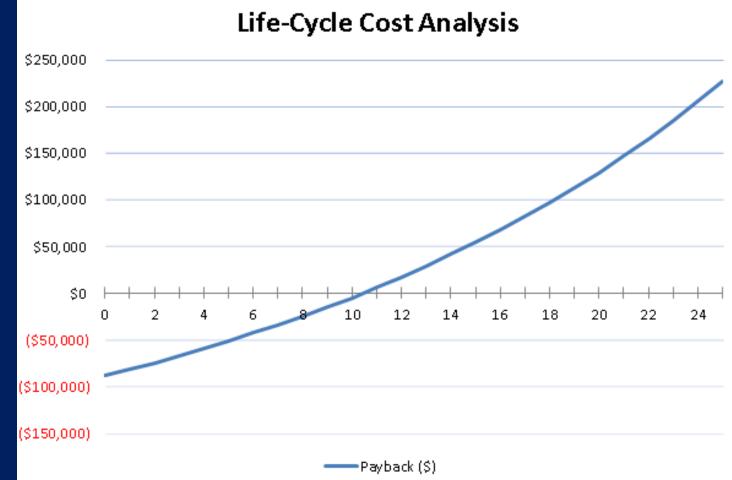
- 1. Project Overview
- 2. Existing Conditions
- 3. Depth
 - 1. Radiant Heating and Cooling
 - 2. Low Velocity Displacement Ventilation
- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. Life-Cycle Cost Analysis
- 6. Pros Versus Cons

savings versus initial cost.

A Life-Cycle Cost Analysis was performed for the annual energy

NISTIR 85-3273-25 (Rev. 5/10)


Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis – 2010



Prepared for United States Department of Energy Federal Energy Management Program

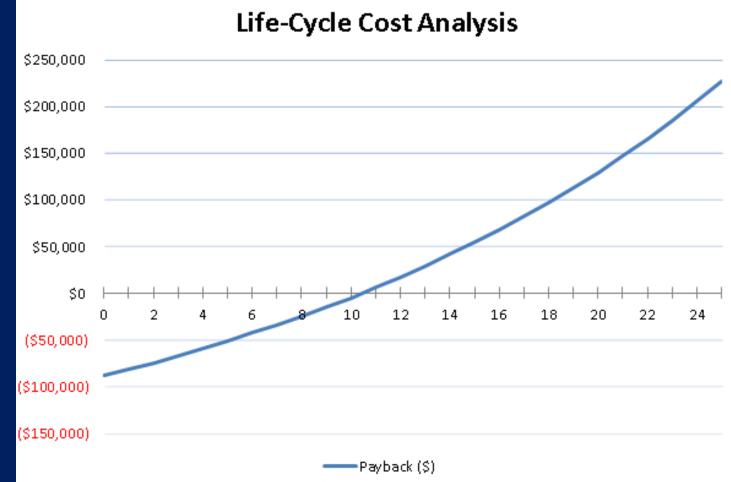
May 2010

The Analysis showed a payback period of 10.5 years for the changes to the original design.

- 1. Project Overview
- 2. Existing Conditions
- 3. Depth
 - 1. Radiant Heating and Cooling
 - 2. Low Velocity Displacement Ventilation
- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. Life-Cycle Cost Analysis
- 6. Pros Versus Cons

			fe-(ngs	
<mark>51</mark>	Ta			
	ricity	Elect		
	n Rate	flatio 3 %	2 8	Year
0	0.93	0.92	0.92	2011
1	0.99	0.98	0.96	2012
1	1.06	1.03	1.00	2013
1	1.08	1.04	1.00	2014
1	1.12	1.07	1.02	2015
1	1.18	1.11	1.05	2016
	1.24	1.16	1.09	2017
1	1.31	1.21	1.12	2018 2019
1	1.43	1.30	1.14	2019
Ĵ	1.51	1.36	1.22	2021
1111222	1.58	1.41	1.25	2022
1	1.67	1.47	1.30	2023
2	1.75	1.53	1.33	2024
2	1.81	1.57	1.35	2025
2	1.89	1.62	1.39	2026
24.24	1.98 2.08	1.68	1.42	2027 2028
	2.08	1.84	1.47	2028
24.22	2.33	1.92	1.58	2029
3	2.47	2.02	1.64	2031
3	2.61	2.11	1.71	2032
3	2.75	2.20	1.76	2033
3	2.89	2.29	1.81	2034
3	3.04	2.38	1.87	2035
4	3.18	2.47	1.92	2036
4				
4				
5				

Cost Analysis was performed for the annual energy sus initial cost.


ble S-1, continued. Projected fuel price indices with assumed general price inflation rates of 2 %, 3 %, 4 %, and 5 %, by end-use sector and fuel type.

Census Region 1 (Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont)

oril 1 Fuel Price Indices (April 1, 2010 = 1.00)

		COT MILLION PAD				
	Distillate Oil	Residual Oil	Natural Gas	Coal		
5 %	2 8 3 8 4 8 5 8 1.03 1.04 1.05 1.06	2 8 3 8 4 8 5 8 1.02 1.03 1.04 1.05	2 8 3 8 4 8 5 8 1.09 1.10 1.11 1.12	2 % 3 % 4 % 5 % 1.00 1.01 1.02 1.03		
1.01	1.11 1.14 1.16 1.18	1.15 1.17 1.19 1.21	1.17 1.20 1.22 1.24	1.02 1.04 1.06 1.08		
1.09	1.21 1.24 1.28 1.32	1.30 1.34 1.38 1.42	1.20 1.23 1.27 1.31	1.04 1.07 1.10 1.13		
1.12	1.29 1.34 1.39 1.45	1.43 1.49 1.55 1.61	1.20 1.25 1.30 1.35	1.06 1.10 1.15 1.19		
1.18	1.36 1.43 1.50 1.57	1.52 1.59 1.67 1.75	1.23 1.29 1.35 1.42	1.08 1.13 1.19 1.25		
1.25	1.45 1.53 1.63 1.72	1.61 1.71 1.81 1.92	1.26 1.34 1.42 1.50	1.09 1.16 1.23 1.30		
1.33	1.53 1.64 1.75 1.87	1.71 1.83 1.96 2.09	1.28 1.37 1.47 1.57	1.11 1.19 1.27 1.36		
1.41	1.61 1.74 1.88 2.03	1.81 1.95 2.11 2.28	1.31 1.42 1.53 1.65	1.13 1.22 1.32 1.42		
1.49	1.68 1.83 2.00 2.18	1.92 2.09 2.28 2.49	1.34 1.47 1.60 1.74	1.14 1.24 1.36 1.48		
1.58	1.74 1.92 2.12 2.33	2.00 2.20 2.42 2.67	1.38 1.52 1.67 1.84	1.16 1.28 1.41 1.55		
1.67	1.79 2.00 2.22 2.47	2.06 2.30 2.56 2.84	1.42 1.58 1.76 1.95	1.17 1.30 1.45 1.61		
1.77	1.85 2.08 2.34 2.62	2.13 2.40 2.70 3.02	1.47 1.65 1.85 2.08	1.20 1.35 1.51 1.70		
1.89	1.91 2.17 2.46 2.78		1.51 1.72 1.95 2.21	1.23 1.39 1.58 1.79		
2.00	1.96 2.25 2.57 2.94		1.55 1.77 2.03 2.32	1.26 1.44 1.65 1.89		
2.09			1.58 1.83 2.12 2.45 1.63 1.91 2.23 2.60	1.28 1.48 1.71 1.97 1.31 1.53 1.79 2.08		
2.20 2.33	2.09 2.44 2.85 3.32 2.15 2.54 2.99 3.52	2.42 2.83 3.31 3.85 2.50 2.95 3.48 4.09	1.63 1.91 2.23 2.60 1.69 1.99 2.34 2.76	1.31 1.53 1.79 2.08 1.33 1.57 1.85 2.18		
2.47	2.22 2.65 3.15 3.74	2.58 3.08 3.66 4.35	1.75 2.08 2.48 2.95	1.36 1.62 1.93 2.30		
2.65	2.30 2.77 3.33 3.99	2.67 3.21 3.86 4.63	1.82 2.19 2.63 3.16	1.39 1.68 2.02 2.42		
2.82	2.37 2.88 3.49 4.23	2.76 3.36 4.07 4.93	1.90 2.30 2.80 3.39	1.43 1.74 2.11 2.56		
3.02	2.45 3.01 3.69 4.51	2.87 3.52 4.32 5.28	1.98 2.43 2.98 3.64	1.46 1.80 2.20 2.69		
3.23	2.54 3.15 3.90 4.81	2.97 3.68 4.55 5.62	2.05 2.54 3.14 3.88	1.49 1.85 2.29 2.82		
3.43	2.63 3.29 4.11 5.13	3.05 3.82 4.77 5.95	2.10 2.63 3.29 4.10	1.53 1.91 2.39 2.98		
3.64	2.73 3.44 4.34 5.46	3.18 4.02 5.07 6.37	2.17 2.75 3.46 4.36	1.56 1.98 2.49 3.14		
3.86	2.82 3.60 4.59 5.83	3.28 4.19 5.33 6.77	2.24 2.86 3.64 4.62	1.60 2.05 2.60 3.31		
.08	2.92 3.76 4.83 6.20	3.40 4.38 5.63 7.22	2.31 2.97 3.82 4.90	1.64 2.11 2.72 3.49		
.31	3.01 3.92 5.09 6.59	3.52 4.58 5.95 7.71	2.38 3.10 4.02 5.21	1.68 2.19 2.84 3.68		
.55	3.11 4.09 5.35 7.00	3.66 4.80 6.30 8.23	2.46 3.23 4.23 5.53	1.71 2.25 2.95 3.86		
.80	3.21 4.26 5.64 7.44	3.79 5.03 6.66 8.79	2.54 3.37 4.45 5.88	1.76 2.33 3.08 4.07		
5.07	3.31 4.44 5.93 7.91	3.94 5.27 7.05 9.39	2.62 3.51 4.69 6.24	1.80 2.41 3.22 4.29		

The Analysis showed a payback period of 10.5 years for the changes to the original design.

- 1. Project Overview
- 2. Existing Conditions
- 3. Depth
 - 1. Radiant Heating and Cooling
 - 2. Low Velocity Displacement Ventilation
- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros versus Cons

The increase indoor environment is a major benefit of the proposed redesign.

- Increased IAQ
- Contaminant Control
- Warm Floor for Kindergarten
- Increased Thermal Comfort
 Reduced Absences
- 6% Energy Reduction

- 30% Increased Ventilation
- Decreased Mechanical Noise
- 225K Payback over 25yrs
- Increased Test Scores

The redesign is considered to be feasible and is recommended.

Questions?

- 1. Project Overview
- 2. Existing Conditions
- 3. Depth
 - 1. Radiant Heating and Cooling
 - 2. Low Velocity Displacement Ventilation
- 4. Breadths
 - 1. Daylighting
 - 2. Acoustics
- 5. Overall Cost
 - 1. Initial Difference
 - 2. LCC
- 6. Pros versus Cons

The increase indoor environment is a major benefit of the proposed redesign.

Con's

 5% Increased Initial Cost

 Increased Construction Time

The redesign is considered to be feasible and is recommended.

Questions?